Skip to main content

Medically reviewed by Dr. C.H. Weaver M.D. Medical Editor updated 6/2022

Stage II or III multiple myeloma is characterized by an intermediate or high amount of cancer in the body. Patients with either of these stages of multiple myeloma often have bone complications as a result of their disease and usually experience symptoms that require treatment.

Recent advances incorporating new precision medicines, immunotherapy, stem cell transplantation, CAR T cells, and maintenance therapy have significantly improved the survival of individuals diagnosed with multiple myeloma by several years.

Multiple Myeloma CancerConnect 490

Currently, the only potentially curative treatment for multiple myeloma remains high-dose therapy followed by a stem cell transplant using donor cells (allogeneic stem cell transplant). This treatment, however, is associated with side effects, and requires a donor. CAR T cells, and BiTE technology are recent advances that will play a role in the treatment of advanced multiple myeloma. 

Risk Based Treatment

The current primary treatment of multiple myeloma may consist of three phases and is tailored to each individual based on their risk of myeloma recurrence and whether they are eligible for stem cell transplant. 

High Risk Myeloma: To risk-stratify myeloma patients fluorescence in situ hybridization (FISH) studies should be performed on the bone marrow. The following are considered to be high risk features;  t(4;14), t(14;16), t(14;20), del17p13, and gain 1q. LDH levels over 2,000 and plasma cell leukemia are also considered to be high-risk. 

Standard Risk Myeloma: The following chromosome abnormalities are considered standard risk; t(11;14), t(6;14), and trisomies of odd numbered chromosomes.

  1. Induction Therapy with 3 or 4 drugs. The main goal of initial therapy of multiple myeloma is to produce a complete or near complete disappearance of myeloma cells in the body. A majority of patients can expect to achieve this goal with current therapies.1
  2. High dose chemotherapy and autologous stem cell transplant (ACST). This will be preferred for most but not all individuals. Stem cells should be collected in ALL patients at this time for immediate or later use.
  3. Maintenance therapy which is given at regular intervals to control the myeloma and prevent the emergence of myeloma cells resistant to therapy.

A combination of induction, ASCT, and maintenance therapy has become the standard treatment approach for multiple myeloma and the components are adjusted based whether an individual is high or standard risk. 

For example chemotherapy induction with a three drug or "triplet" regimen consisting of Revlimid (lenalidomide), Velcade (bortezomib), and dexamethasone (RVD) followed by ASCT, two RVD consolidation cycles and 1 year of Revlimid maintenance therapy produces a very good partial response in 58% of patients by the completion of 3 cycles of RVD induction therapy. This improves to 70% following ASCT, and 87% after Revlimid consolidation therapy. Maintenance Revlimid results in an upgrade of the best response in 27% of patients and 3-year overall survival was 100%.

The RVD and ASCT treatment program is one example of how physicians combine induction, ASCT, and maintenance therapy. There are several different three drug induction regimens in use.

Planning Treatment for Multiple Myeloma

Clinical trials conducted over the past two decades have shown that patients who undergo ASCT as part of their myeloma treatment experience improved outcomes.2  Most patients are eligible for ASCT however frail or elderly individuals may not be optimal candidates.  The pros and cons of the following treatment approaches are influenced by your risk factors and should be discussed with a myeloma expert. 

  • 3-4 Drug Induction Regimen followed by Maintenance Therapy 
  • 3-4 Drug Induction Regimen Followed by ASCT and Maintenance Therapy
  • 3-4 Drug Induction Regimen Followed by Delayed ASCT and Maintenance. Stem cells are collected and stored during induction for later use. 

Induction Therapy for Multiple Myeloma

Most patients with stage II or III multiple myeloma will initially receive treatment with a combination of approved medications to induce a complete or near complete disappearance of myeloma cells, and this treatment is sometimes referred to as induction therapy.3,4 The selection of initial therapy depends on patient age, risk, and a patients overall general medical condition. Patients in good health irrespective of age are often treated aggressively to produce a complete remission while more debilitated or older patients may receive less aggressive therapy at the beginning of treatment.

Doctors typically use a combination of an immunomodulatory drug, a proteasome inhibitor and a steroid as initial standard induction treatment for patients with standard risk multiple myeloma. These "triplet" regimens have been shown to delay cancer progression and prolong survival compared to two drug regimens.

Preferred Three Drug Regimens

  • Velcade, Revlimid, Dexamethasone (VRd).36
  • Darzalex, Revlimid, Dexamethasone (DRd). Important option for patients who may not tolerate Velcade because of pre-existing peripheral neuropathy.37

Three vs Four Drug Combinations

Combining a proteasome inhibitor plus an immunomodulatory drug currently forms the backbone of three drug myeloma treatment regimens. The addition of a third class of active drugs like the monoclonal antibody Darzalex may be beneficial especially for individuals with high risk disease. Recent clinical trials provide early data on the use of quadruplets versus triplet combinations and show an increased rate of stringent complete responses.33,34

A phase 2 clinical trial referred to as “GRIFFIN” has demonstrated that the addition of Darzalex® to Velcade, Revlimid and dexamethasone (DVRd) induces high response rates in newly diagnosed patients and that by the end of six cycles of therapy and transplant, 42% of patients receiving DVRd achieved a stringent complete response compared with 32% of those treated with VRd.

Longer follow up will determine whether quadruplet therapy improves overall survival and provide further insight into which patient populations benefit most from a four drug combination.

The following medicines are approved by the U.S. Food and Drug Administration for the initial treatment of multiple myeloma. 

Steroids (dexamethasone - prednisone)

Steroids are widely used and incorporated into most 3 and 4 drug regimens. 

IMiDs (immunomodulatory drugs)

  • Thalomid® (thalidomide) is a drug that was originally developed as a sleeping pill, but researchers began investigating it as an anticancer drug when they discovered that it slows or stops the growth of new blood vessels. Cancer cells require food and oxygen in order to grow and spread. These essential nutrients are transported to the cancer cells by blood vessels. By inhibiting the growth of new blood vessels, Thalomid “starves” the cancer of the food and oxygen that it needs to survive and grow. Thalomid® is an active treatment for multiple myeloma and the response to treatment may be even greater when Thalomid® is combined with other drugs.1,2,3
  • Revlimid® (Lenalidomide) is a derivative of Thalomid® and the addition of Revlimid® to dexamethasone has been shown to improve treatment outcomes.4,5 The addition of Revlimid® to dexamethasone can also increase the occurrence of side effects such as neutropenia (low white blood cell counts), blood clots and neuropathy.
  • Pomalyst® (pomalidomide) is an immunomodulatory drug that works by directly inhibiting the growth of blood vessels that supply nutrients to the myeloma cells. Inhibition of this angiogenesis reduces and prevents myeloma cell growth. Pomalyst® alone has shown limited effectiveness in patients with recurrent multiple myeloma, but synergistic effects have been noted when combined with dexamethasone.6

Proteasome inhibitors

  • Velcade® (bortezomib) is a targeted therapy that is classified as a proteasome inhibitor. Velcade® produces its anti-cancer responses by inhibiting proteasome complexes in a cell. Proteasome complexes have many different functions in a cell, including growth and death pathways of many different proteins. Inhibition of proteasome complexes ultimately causes cellular death.7 Studies have also evaluated Velcade®in combination with other therapies, and several of these combinations have produced promising results.8,9
  • Kyprolis® ( (carfilzomib)) is a next generation proteasome inhibitor and a very effective treatment of myeloma. Patients with advanced myeloma treated with Kyprolis® in combination with Revlimid® and low-dose dexamethasone lived on average over 10 months longer compared to patients treated with Revlimid® and low-dose dexamethasone alone.10
  • Ninlaro® (ixazomib) is an oral proteasome inhibitor that also has promising anti-myeloma effects and low rates of peripheral neuropathy. Velcade® was the first in a new class of anticancer agents known as proteasome inhibitors to be approved for the treatment of multiple myeloma and has become a standard of care as part of initial treatment. Velcade®, Revlimid®, and dexamethasone are highly effective treatments for newly diagnosed multiple myeloma. Substituting Ninlaro® for Velcade® allows for the creation of an oral drug regimen with potential for improved patient convenience.11

Precision Cancer Medicines

  • Darzalex® (dartuxumab) is a precision medicine-monoclonal antibody that targets the CD38 antigen on the multiple myeloma cells surface. When added to dexamethasone and either Velcade®or Revlimid®, Darzalex® improves outcomes when compared to dexamethasone and Velcade® or Revlimid® alone.12,13
  • Farydak® (panobinostat) is a drug that belongs to a class of drugs called histone deacetylase (HDAC) inhibitors. They work by increasing the production of proteins that slow cell division and cause cell death. Adding Farydak®to Velcade® and dexamethasone is reported to improve the time to cancer progression from 8 to 12 months with over twice as many patients surviving 2 years. Longer follow up is required to determine any overall survival benefit.14
  • Empliciti® (elotuzumab) is a precision medicine-monoclonal antibody, which binds to a protein (the CS1 glycoprotein) commonly found on myeloma cells and rarely found on normal cells. This treatment activates natural killer cells of the immune system to selectively kill myeloma cells. Empliciti® in combination with Revlimid® and low-dose dexamethasone, was evaluated in relapsed multiple myeloma. Overall, 82% of patients in the trial responded to treatment.15

Chemotherapy - Alkylating agents

  • Cytoxan® (cyclophosphamide)
  • Alkeran (melphalan)
  • Oncovin (vincristine)

Treatment of Older Individuals

Although older adults with multiple myeloma often fare worse than their younger counterparts, triplet regimens appear to offer similar benefits regardless of age, according to a study released at ASH 2019 by Dr. Bindu Kanapuru, of the U.S. FDA.

In a report analyzing 10 clinical trials including over 4700 patients submitted to the FDA for new drug approvals between 2011 and 2015 researchers found that three drug regimens prolonged survival without myeloma progression irrespective of age. Older patients over 80 seemed to do as well as younger adults with triplet regimens.

Three drug regimens produced an average progression free survival period of 14.3 months in individuals older than 80 and 16.7 months for those under 65. Overall survival benefit was was not as consistently weighted in favor of triplet regimens. Older adults who are enrolled in clinical trials tend to be healthier and the multiple causes of death that occur in an aging population definitely influence the trial results and make it more difficult to interpret overall survival. This research suggests that age alone should not preclude older individuals from treatment with three drug regimens and older patients should carefully consider the risks and benefits of treatment with their treating physician.35

Multiple Myeloma Useful Definitions and Diagnostic Tests

High-dose Therapy and Stem Cell Transplant

A large, comparative, phase III clinical trial has confirmed that ASCT utilized as part of the initial treatment is superior to the use of novel agents for treatment of multiple myeloma and is the treatment of choice for many patients with newly diagnosed multiple myeloma. The clinical trial evaluated a total of 1,266 patients less than 65 years of age with newly diagnosed multiple myeloma between February 2011 and April 2014.17

High doses of chemotherapy are more effective at killing myeloma cancer cells than lower doses. However, high-dose therapy destroys many other cells in the body. A dangerous side effect of administering high-dose therapy is damage to the stem cells in the bone marrow that develop into mature blood cells. Without functioning stem cells in the bone marrow, the body cannot produce red blood cells, white blood cells or platelets, which leaves patients vulnerable to infection and bleeding, and unable to supply adequate oxygen to their tissues.

Bone marrow function can be restored after high-dose therapy by replacing the damaged stem cells with healthy ones. This is a procedure known as a stem cell transplant.

There are two possible sources of stem cells for transplantation; they may be collected from the patient prior to undergoing high-dose therapy or they may be collected from a donor. A stem cell transplant that utilizes the patient’s own stem cells is called an ASCT. When the stem cells are from a donor the procedure is called an allogeneic stem cell transplant.

High-dose therapy followed by ASCT is a standard treatment for patients with stage II or III multiple myeloma. Following an initial ASCT, some patients may benefit from a second ASCT. This is known as a tandem, or double, transplant. Studies have suggested that patients who do not achieve a complete or very good anti-cancer response to the first ASCT are the most likely to benefit from a second ASCT.2,17,18

Scroll to Continue

Recommended Articles

In general, ASCT is performed much more frequently than allogeneic transplants. This is due to the fact that there are relatively few patients with suitable donors and because allogeneic transplants are associated with more treatment-related complications.

Initial High-Dose Therapy and Stem Cell Transplant or Wait Until After Relapse?

Although ASCT as part of initial therapy appears superior to novel agents for treatment of multiple myeloma some patients and physicians elect to wait until multiple myeloma recurs after initial treatment or progresses with treatment before proceeding to ASCT. Results of clinical trials indicate that patients may have similar survival whether they elect to undergo ASCT as part of initial therapy or at the time of relapse.17,18 Based on these findings, a recent review of multiple myeloma concluded that the timing of ASCT “is based on patient and physician preference and the ability to cryopreserve stem cells.” One potential advantage of early ASCT is that it involves a shorter duration of chemotherapy.

It is important to note that undergoing ASCT at the time of myeloma progression is more likely to be successful if it is planned for. Stem cells must be collected prior to any other initial treatment because the bone marrow becomes damaged even with conventional-dose chemotherapy.

Maintenance Therapy

Maintenance therapy is the ongoing use of a medicine for months to years to help lower the risk of recurrence after initial therapy has induced a cancer remission. Velcade®, Revlimid, and Ninlaro "maintenance" are all reported to delay the time to cancer recurrence, but not all have ultimately increased overall survival.8,13,14 Revlimid® is also associated with an increase in the risk of developing myelodysplasia or acute leukemia which is reported to occur in 3% to 7% of individuals taking the medication.15,16

The optimal duration of maintenance therapy is being debated. The studied duration is 2 years however some experts believe it should be continued until the myeloma reoccurs. The type and duration of maintenance should be discussed with your doctor.

Complications & Side Effects of Myeloma

The treatment of multiple myeloma is focused on controlling the underlying disease (the increased number of abnormal plasma cells). Managing the symptoms and other medical problems resulting from the increased numbers of plasma cells and abnormal proteins is equally important. The following are complications of multiple myeloma that have specific treatments available:

  • Bone complications
  • Hypercalcemia
  • Decreased blood cell production
  • Anemia
  • Infection
  • Kidney dysfunction

Bone complications: In 70% of multiple myeloma cases, the bones develop multiple holes, which explains why the disease is referred to as “multiple” myeloma. The holes are referred to as osteolytic lesions, which cause the bones to be fragile and subject to fractures. Osteolytic lesions are caused by the rapid growth of myeloma cells, which push aside normal bone-forming cells, preventing them from repairing general wear and tear of the bones. Under normal circumstances, cells called osteoclasts destroy dead and dying bone. Multiple myeloma causes the secretion of osteoclast-activating factor, a substance that stimulates osteoclasts.

Multiple myeloma involving the bone can cause pain, fracture and other significant problems for patients. Management of bone involvement is an integral part of the overall treatment strategy for multiple myeloma. The first objective of treatment of bone complications is to prevent new bone disease from developing or progression from existing bone lesions to occur.

Bisphosphonate drugs can effectively prevent loss of bone that occurs from metastatic lesions, reduce the risk of fractures, and decrease pain. Bisphosphonate drugs work by inhibiting bone resorption, or breakdown. Bone is constantly being “remodeled” by two types of cells: osteoclasts, which break down bone; and osteoblasts, which rebuild bone. Although the exact process by which bisphosphonates work is not completely understood, it is thought that bisphosphonates inhibit osteoclasts and induce apoptosis (cell death) in these cells, thereby reducing bone loss. There is also evidence that these drugs bind to bone, thereby blocking osteoclasts from breaking down bone.

Bisphosphonate drugs that are FDA-approved for the treatment of cancer-related skeletal complications include Zometa® (zoledronic acid) and Aredia® (pamidronate). Of these two drugs, Zometa appears to demonstrate the strongest activity. An added benefit of Zometa is that it is administered in a dose ten times lower than Aredia, which considerably reduces the administration time from several hours to 15 minutes, resulting in a more convenient regimen for patients.19

Patients with progressive bone involvement from multiple myeloma may experience worsening pain and/or fracture of the bone from the progressive cancer. Low-dose radiation therapy, as well as analgesics, can help control the pain from bone progression of multiple myeloma.

Hypercalcemia: Many multiple myeloma patients develop hypercalcemia, which is an increased level of calcium in the bloodstream. Hypercalcemia results from the destruction of bone from osteolytic lesions or sometimes from the development of generalized osteoporosis, in which all the bones are soft and porous and have lost calcium. Hypercalcemia in patients with multiple myeloma causes fatigue, lethargy and other symptoms. Severe hypercalcemia is a medical emergency requiring immediate treatment. Typically, hypercalcemia is treated with bisphosphonates and hydration.

Decreased blood cell production: The multiplication of the plasma cells in the bone marrow eventually crowds out and suppresses the normal production of blood cells. This may cause a significant decrease in red blood cells, causing anemia; in platelets, causing abnormal bleeding and in white blood cells, causing neutropenia.

Anemia: Anemia, or a decrease in the red blood cell hemoglobin concentration necessary for the transport of oxygen to the body’s organs, is a common complication of multiple myeloma. Anemia may cause patients to experience tiredness, fatigue, shortness of breath and/or a reduced tolerance to activity. Anemia resulting from multiple myeloma can often be treated with erythropoietin (Procrit® (epoetin alfa) or Aranesp® (darbepoetin alfa).

Infections: The depletion of normal white blood cells compromises the patient’s immunity in several ways. First, the number of monocytes and granulocytes are greatly reduced so that the patient is at risk from infections. Second, the delicate and complex balance between the different types of lymphocytes is distorted. Patients with multiple myeloma often have reduced levels of normal immunoglobulin necessary to fight certain types of infections. Patients experiencing recurrent infections may need to have immunoglobulin levels replenished. Patients who experience recurrent infections may want to ask their physician about immunoglobulin replacement therapy.

Kidney dysfunction: In 75% of patients, the plasma cells also produce monoclonal incomplete immunoglobulins, called light chains. These are excreted in the urine and are the so-called Bence Jones proteins. Bence Jones proteins are named after a British physician, Henry Bence Jones (1813-1873), who first discovered them. Bence Jones proteins may deposit in the kidney, clogging the tubules. Ultimately, this damages the kidney and can cause renal failure. Hypercalcemia may exacerbate kidney problems because excess calcium in the bloodstream causes excessive fluid loss and dehydration. Because the abnormal proteins produced by the plasma cells are eliminated from the body through the urine, they may accumulate in the kidneys and cause kidney dysfunction. In addition to treating the underlying cancer, it is important for patients to maintain adequate oral intake of fluids to help avoid kidney failure and avoid using over-the-counter medications such as non-steroidal anti-inflammatory drugs that can worsen kidney function.

Strategies to Improve Treatment

Advances in precision medicine are leading to the development of more effective treatments for multiple myeloma. Advances require that these new and innovative therapies be evaluated with cancer patients in clinical trials. Patients should discuss the role of clinical trials in the management of their condition with their doctor.

Precision Medicines- Cancer used to be diagnosed solely by a visual microscopic examination of tumor tissue and all patients received the same chemotherapy. Now, doctors are personalizing care by finding the genetic alterations within the cancer that drive its growth and use medicines that specifically counteract the cancerous effects of those genes. In addition, these “targeted therapies” are designed to treat only the cancer cells and minimize damage to normal, healthy cells. The ability to test a patients’ cancer for individual differences at the genetic level, and to make treatment decisions based on those differences is the hallmark of precision medicine. There are dozens of novel precision medicines in development - learn more here.

Bispecific antibody constructs represent an innovative immunotherapy approach that helps the body’s immune system target cancer cells and appears very promising for the treatment of multiple myeloma. Bispecific antibodies or BiTE which is short for "bispecific T cell engager" are antibodies with two arms. One arm of the drug attaches to a specific protein on the cancer cell. The other arm of the BiTE activates immune cells in the patient to kill the cancer cells. learn more...

Maintenance therapy: The administration of relatively low doses of anticancer drugs after an ASCT could extend the time before cancer progression or prevent relapses. Dexamethasone and interferon are two drugs that have been investigated as maintenance therapy, but benefits remain uncertain.

Researchers conducted a Phase III clinical trial in 614 patients under the age of 65 who had undergone ASCT for initial treatment of multiple myeloma and then treated either Revlimid® or a placebo. Treatment with Revlimid® delayed the progression of myeloma but did not prolong overall survival.

Progression-free survival was 46 months with Revlimid® and 24 months with placebo. Overall survival is ~ 81 months in both groups.27

Reduced Intensity Allogeneic Stem Cell Transplant:

Reduced Intensity Transplants: In an attempt to reduce treatment-related side effects, some researchers have explored the role of reduced-intensity (RIC) allogeneic stem cell transplantation. This approach carries a lower risk than conventional allogeneic stem cell transplant, but has also been linked with a higher risk of relapse. (28,29) Nevertheless, one small study has reported that ASCT followed by RIC allogeneic stem cell transplantation resulted in better overall survival than tandem ASCT.30

High-dose therapy followed by allogeneic stem cell transplant is currently the only potentially curative treatment for multiple myeloma. The high risk of serious complications, however, has prompted researchers to explore an alternative procedure known as a reduced-intensity allogeneic stem cell transplant. In a study of 24 patients with poor-risk, relapsed, or refractory multiple myeloma, the approach of starting with an autologous stem cell transplant and then performing a reduced-intensity allogeneic stem cell transplant (with stem cells from an unrelated donor) produced promising response rates with a lower risk of death from treatment.31

CAR T Cell Therapy

CAR-T, or chimeric antigen receptor T-cells, a new form of cancer immunotherapy is advancing rapidly. CAR T uses a patient’s own T cells which are removed and then engineered to identify and kill malignant multiple myeloma cells. The use of a patient’s own immune cells to fight cancer is proving to be a promising therapeutic approach in the treatment lymphomas and is now advancing in multiple myeloma. learn more...

Donor lymphocyte infusions: Recent studies have indicated that patients with multiple myeloma who experience a recurrence after an allogeneic transplant achieved high response rates to donor lymphocyte infusions. Researchers from several transplant centers in Europe evaluated 27 patients with multiple myeloma who had a recurrence following treatment with HDC and an allogeneic SCT.

All of these patients received infusions of donor lymphocytes after recurrence of the cancer. Over half of the patients experienced a partial or complete disappearance of myeloma following the infusion. Unfortunately, graft-versus-host disease, a side effect caused by donor cells attacking healthy tissue of the patient, affected over 75% of these patients. The results of this study suggest that donor lymphocyte infusions may be beneficial to patients with multiple myeloma who have a recurrence after HDC and allogeneic stem cell transplant.32


  1. Roussel M, Lauwers-Cances V, Robillard N, et al. Front-Line Transplantation Program With Lenalidomide, Bortezomib, and Dexamethasone Combination As Induction and Consolidation Followed by Lenalidomide Maintenance in Patients With Multiple Myeloma: A Phase II Study by the Intergroupe Francophone du Myélome. Journal of Clinical Oncology. Published online before print July 14, 2014, doi: 10.1200/JCO.2013.54.8164
  2. Barlogie B, Kyle RA, Anderson KC et al. Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: final results of phase III US Intergroup Trial S9321. Journal of Clinical Oncology. 2006;24:929-936.
  3. Weber D, Rankin K, Gavino M, et al. Thalidomide alone or with dexamethasone for previously untreated multiple myeloma. Journal of Clinical Oncology. 2003;21:16-19.
  4. Rajkumar SV, Blood E, Vesole D, et al. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: a clinical trial coordinated by the Eastern Cooperative Oncology Group. Journal of Clinical Oncology. 2006;24(3):431-6.
  5. Dimopoulos M, Spencer A, Attal M, et al.: Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 357 (21): 2123-32, 2007.
  6. Weber DM, Chen C, Niesvizky R, et al.: Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 357 (21): 2133-42.
  7. Millennium Pharmaceuticals. FDA approves Velcade® (bortezomib) for injection for patients with previously untreated multiple myeloma. Available at: Accessed June 2008.
  8. Sonneveld P, Schmidt-Wolf IG, van der Holt B, et al.: Bortezomib induction and maintenance treatment in patients with newly diagnosed multiple myeloma: results of the randomized phase III HOVON-65/ GMMG-HD4 trial. J Clin Oncol 30 (24): 2946-55, 2012
  9. Gregory WM, Richards MA, Malpas JS, Combination chemotherapy vs. melphalan and prednisolone in the treatment of multiple myeloma: An overview of published trials. Journal of Clinical Oncology. 1992;10:334-342.
  10. Gregory WM, Richards MA, Mlpas JS. Combination chemotherapy vs. melphalan and prednisolone in the treatment of multiple myeloma: An overview of published trials. Journal of Clinical Oncology. 1992;10:334-342.
  11. Palumbo A, Bertola A, Musto P et al. Oral Melphalan, Prednisone, and Thalidomide for Newly Diagnosed Patients with Myeloma. Cancer. 2005;104:1428-33.
  12. Palumbo A, Bringhen S, Caravita T, et al. Oral melphalan and prednisone chemotherapy plus thalidomide compared with melphalan and prednisone alone in elderly patients with multiple myeloma: randomized controlled trial. The Lancet. 2006;367:825-831.
  13. Mateos MV, Oriol A, Martínez-López J, et al.: Bortezomib, melphalan, and prednisone versus bortezomib, thalidomide, and prednisone as induction therapy followed by maintenance treatment with bortezomib and thalidomide versus bortezomib and prednisone in elderly patients with untreated multiple myeloma: a randomised trial. Lancet Oncol 11 (10): 934-41, 2010.
  14. Mateos MV, Oriol A, Martínez-López J, et al.: Maintenance therapy with bortezomib plus thalidomide or bortezomib plus prednisone in elderly multiple myeloma patients included in the GEM2005MAS65 trial. Blood 120 (13): 2581-8, 2012.
  15. Attal M, Lauwers-Cances V, Marit G, et al.: Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N Engl J Med 366 (19): 1782-91, 2012.
  16. Palumbo A, Hajek R, Delforge M, et al.: Continuous lenalidomide treatment for newly diagnosed multiple myeloma. N Engl J Med 366 (19): 1759-69, 2012. Results of a Multicenter Sequential Randomized Trial. Blood. 1998;92:3131-3136.
  17. Cavo M, Palumbo A, Zweegman S, et al. Upfront autologous stem cell transplantation (ASCT) versus novel agent-based therapy for multiple myeloma (MM): A randomized phase 3 study of the European Myeloma Network (EMN02/HO95 MM trial). Abstract #8000. Presented at the 2016 American Society of Clinical Oncology Annual Meeting, Chicago, IL, June 3, 2016.
  18. Fermand J-P, Ravaud P, Chevret S, et al. High-Dose Therapy and Autologous Peripheral Blood Stem Cell Transplantation: UP-Front or Rescue Treatments?
  19. Ross JR, Saunders Y, Edmonds PM, et al. Systematic Review of Role of Bisphosphonates on Skeletal Morbidity in Metastatic Cancer. British Medical Journal 2003; 327:469-471.
  20. Usmani S, Weiss B, Plesner T, et al. Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma. Blood. 2016; doi:10.1182/blood-2016-03-705210. Available here. Accessed June 29, 2016.
  21. Lokhohrst H, Plesner T, Laubach J, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. New England Journal of Medicine. 2015; August 26, 2015DOI: 10.1056/NEJMoa1506348.
  22. San-Migule J, Hungira V, Yoon S-S, et al. Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. The Lancet Oncology, Volume 15, Issue 11, Pages 1195 – 1206, October 2014.
  23. Wang M, Martin T, Bensinger W, et al. Phase 2 dose-expansion study (PX-171-006) of carfilzomib, lenalidomide, and low-dose dexamethasone in relapsed or progressive multiple myeloma. Blood. 2013; 122(18):3122-3128.
  24. Richardson PGG, Moreau P, Jakubowiak AJ et al. Elotuzumab with lenalidomide and low-dose dexamethasone in patients with relapsed multiple myeloma: a randomized phase II study. Paper presented at: 2011 Annual Meeting of the American Society of Clinical Oncology; June 3-7, 2011; Chicago, IL. Abstract 8014. Meeting of the American Society of Clinical Oncology; June 3-7, 2011; Chicago, IL. Abstract 8014.
  25. San Miguel J, Weisel K, Moreau P, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncology. Published early online September 3, 2013. doi:10.1016/S1470-2045(13)70380-2
  26. Kumar S, Berdeja J, Niewsvizky R, et al. Safety and tolerability of ixazomib, an oral proteasome inhibitor, in combination with lenalidomide and dexamethasone in patients with previously untreated multiple myeloma: an open-label phase 1/2 study. The Lancet Oncology, Volume 15, Issue 13, Pages 1503 – 1512. December 2014.
  27. Attal M, Lauwers-Cances V, Marit G et al. Lenalidomide Maintenance After Stem-Cell Transplantation For Multiple Myeloma: Follow-Up Analysis Of The IFM 2005-02 Trial. Presented at the 55th ASH Annual Meeting and Exposition. New Orleans, LA. December 7-10, 2013. Abstract 406.
  28. Kyle RA, Rajkumar SV. Multiple Myeloma. Blood. 2008;111:2962-2972.
  29. Harousseau J-L. Role of stem cell transplantation. Hematology/Oncology Clinics of North America. 2007;21:1157-1174.
  30. Bruno B, Rotta M, Patriarca F et al. A comparison of allografting with autografting for newly diagnosed myeloma. New England Journal of Medicine. 2007;356:1110-1120.
  31. Georges GE, Maris MB, Maloney GD et al. Nonmyeloablative unrelated donor hematopoietic cell transplantation for the treatment of patients with poor-risk, relapsed, or refractory multiple myeloma. Biol Blood Marrow Transplant. 2007;13:423-432.
  32. Lokhorst HM, Schattenberg A, Cornelissen JJ et al. Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem-cell transplantation: predictive factors for response and long-term outcome. Journal of Clinical Oncology. 2000;18:3031-3037.
  33. Mateos M-V, Dimopoulos MA, Cavo M, et al. Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. N Engl J Med. 2018;378:518-528. DOI: 10.1056/NEJMoa1714678.
  34. A Study to Evaluate Daratumumab in Transplant Eligible Participants With Previously Untreated Multiple Myeloma (Cassiopeia),
  35. Kanapuru B, et al. Abstract 3194. Presented at: ASH Annual Meeting and Exposition; Dec. 7-10, 2019; Orlando.
  36. Durie BG, Hoering A, Abidi MH, et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial. Lancet 2017; 389:519.

  37. Facon T, Kumar SK, Plesner T, et al. Daratumumab, lenalidomide, and dexamethasone versus lenalidomide and dexamethasone alone in newly diagnosed multiple myeloma (MAIA): overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol 2021; 22:1582.