A blood type (also known as a blood group) is a classification of blood, based on the presence and absence of antibodies and inherited antigenic substances on the surface of red blood cells (RBCs). These antigens may be proteins, carbohydrates, glycoproteins, or glycolipids, depending on the blood group system. Some of these antigens are also present on the surface of other types of cells of various tissues. Several of these red blood cell surface antigens can stem from one allele (or an alternative version of a gene) and collectively form a blood group system.

Blood types are inherited and represent contributions from both parents. As of 2019, a total of 41 human blood group systems are recognized by the International Society of Blood Transfusion (ISBT).[2] The two most important blood group systems are ABO and Rh; they determine someone's blood type (A, B, AB, and O, with +, − or null denoting RhD status) for suitability in blood transfusion.

Human blood group systems

A complete blood type would describe each of the 38 blood groups, and an individual's blood type is one of many possible combinations of blood-group antigens. Almost always, an individual has the same blood group for life, but very rarely an individual's blood type changes through addition or suppression of an antigen in infection, malignancy, or autoimmune disease. Another more common cause of blood type change is a bone marrow transplant. Bone-marrow transplants are performed for many leukemias and lymphomas, among other diseases. If a person receives bone marrow from someone who is a different ABO type (e.g., a type A patient receives a type O bone marrow), the patient's blood type will eventually convert to the donor's type.

Some blood types are associated with inheritance of other diseases; for example, the Kell antigen is sometimes associated with McLeod syndrome. Certain blood types may affect susceptibility to infections, an example being the resistance to specific malaria species seen in individuals lacking the Duffy antigen. The Duffy antigen, presumably as a result of natural selection, is less common in population groups from areas having a high incidence of malaria.

ABO blood group system

The ABO blood group system involves two antigens and two antibodies found in human blood. The two antigens are antigen A and antigen B. The two antibodies are antibody A and antibody B. The antigens are present on the red blood cells and the antibodies in the serum. Regarding the antigen property of the blood all human beings can be classified into 4 groups, those with antigen A (group A), those with antigen B (group B), those with both antigen A and B (group AB) and those with neither antigen (group O). The antibodies present together with the antigens are found as follows:

  1. Antigen A with antibody B
  2. Antigen B with antibody A
  3. Antigen AB has no antibodies
  4. Antigen nil (group O) with antibody A and B.

There is an agglutination reaction between similar antigen and antibody (for example, antigen A agglutinates the antibody A and antigen B agglutinates the antibody B). Thus, transfusion can be considered safe as long as the serum of the recipient does not contain antibodies for the blood cell antigens of the donor.

Recommended Articles

Image placeholder title

Osteoporosis – Bone Loss and Cancer

Breast and other cancer survivors may have an elevated risk of developing osteoporosis and fractures.

The ABO system is the most important blood-group system in human-blood transfusion. The associated anti-A and anti-B antibodies are usually immunoglobulin M, abbreviated IgM, antibodies. It has been hypothesized that ABO IgM antibodies are produced in the first years of life by sensitization to environmental substances such as food, bacteria, and viruses, although blood group compatibility rules are applied to newborn and infants as a matter of practice. The original terminology used by Karl Landsteiner in 1901 for the classification was A/B/C; in later publications "C" became "O". Type O is often called 0 (zero, or null) in other languages.

The Rh system (Rh meaning Rhesus) is the second most significant blood-group system in human-blood transfusion with currently 50 antigens. The most significant Rh antigen is the D antigen, because it is the most likely to provoke an immune system response of the five main Rh antigens. It is common for D-negative individuals not to have any anti-D IgG or IgM antibodies, because anti-D antibodies are not usually produced by sensitization against environmental substances. However, D-negative individuals can produce IgG anti-D antibodies following a sensitizing event: possibly a fetomaternal transfusion of blood from a fetus in pregnancy or occasionally a blood transfusion with D positive RBCs. Rh disease can develop in these cases. Rh negative blood types are much less common in Asian populations (0.3%) than they are in European populations (15%). The presence or absence of the Rh(D) antigen is signified by the + or − sign, so that, for example, the A− group is ABO type A and does not have the Rh (D) antigen.

Investigators also suggested further research on how ABO status may moderate venous thromboembolism occurrence, a known complication of COVID-19, since blood group O patients have been associated with a decreased risk of venous thromboembolism in prior research.

Reference

Ray JG, Schull MJ, Vermuelen MJ, Park A. Association between ABO and Rh blood groups and SARS-CoV-2 infection or severe COVID-19 illness. Ann Intern Med. Published online November 24, 2020. doi:10.7326/M20-4511