Surgery for Brain Tumors


Surgery is the primary treatment for brain tumors that can be removed without causing severe damage. Many benign (non-cancerous) tumors are treated only by surgery. Most malignant (cancerous) tumors, however, require treatment in addition to the surgery, such as radiation therapy and/or chemotherapy.

The goals of surgical treatment for brain tumors are multiple and may include one or more of the following:

  • Confirm diagnosis by obtaining tissue that is examined under a microscope.
  • Remove all or as much of the tumor as possible.
  • Reduce symptoms and improve quality of life by relieving intracranial pressure caused by the cancer.
  • Provide access for implantation of internal chemotherapy or radiation.
  • Provide access for delivering intra-surgical treatments, including hypertherapy or laser surgery.

CancerConnect Brain Cancer Community & Discussions

You are not alone—The CancerConnect Brain Cancer Community is the leading Social Media Application for Brain Cancer patients and caregivers seeking information, inspiration, and support in the wake of a cancer diagnosis. With over 50,000 members the network offers patients and caregivers a thriving community to support the many ongoing needs from diagnosis to survivorship. Login or register here.

The following is a general overview of surgical treatment for brain tumors. There are different types of surgeries and techniques available, particularly in institutions that conduct many similar procedures. Circumstances unique to each patient’s situation may influence which approach is applied. The potential benefits of specific procedures must be carefully balanced with potential risks. The information on this web site is intended to help educate patients about their treatment options and to facilitate a mutual or shared decision-making process with their cancer physician.

Choosing a Surgeon and/or Institution: Experience and Volume are Important

Surgical procedures for the treatment of brain tumors can be complicated and may involve significant risk. Research indicates that patients who require complex surgical procedures have better outcomes (fewer surgery-related deaths and complications) if they are treated in high-volume institutions (hospitals that perform a high number of such procedures). [1], [2], [3], [4], [5]It is thought that the more favorable outcomes at high-volume institutions are due to more skilled surgeons as well as a more skilled and dedicated team.

These findings highlight the importance of choosing an experienced surgeon. Outcomes may vary between large and small institutions. However, researchers agree that it is important to select a surgeon with a great deal of experience conducting the specific procedure in question. Often these doctors work at large, specialized institutions.

Surgical Techniques

Many different surgical techniques are utilized in the treatment of brain tumors, particularly in large medical centers that treat a significant number of patients. The technique utilized for a particular patient depends on the type of tumor and its location as well as the preference of the surgeon. The surgical techniques most commonly employed in the treatment of brain tumors include:

  • Stereotactic surgery,
  • Embolization,
  • Endoscopy,
  • Laser surgery,
  • Photodynamic laser surgery, and
  • Ultrasonic aspiration.

Stereotactic surgery: The use of computers to create a three-dimensional image is called stereotaxy. The purpose of this technique is to provide precise information about the location of a tumor and its position relative to the many structures in the brain. Stereotaxy can be used by the surgeon to map out the surgical procedure beforehand so that the neurosurgeon can “rehearse” the procedure or to allow the radiation specialist to plan radiation therapy.

While conventional X-ray pictures depict tumors in two dimensions, stereotaxy provides the third dimension—depth—by obtaining readings in both left to right and front to rear directions, and then using a computer to analyze the information. It is the third dimension that allows the surgeon to accurately insert the needle for biopsy, the laser beam for vaporization, the scalpel for cutting, or the suction device for aspiration.

Stereotactic surgical techniques are used to perform biopsies, remove tumors, implant radiation pellets or other local treatments, or to provide a navigational system during surgery (frameless stereotaxy). These techniques are particularly useful for reaching a tumor located deep within the brain, such as the brain stem or thalamus. Stereotaxy can also help limit the extent of surgery. Some stereotactic systems can project images of the surgery as it is being performed (“real-time” imaging). Stereotaxy is performed either with or without a head frame.

  • Steriotaxy with a head frame involves placing the patient’s head in a rigid frame so the attached scanning devices can accurately pinpoint the tumor location in three-dimensional space. The rigid frame holds the patient’s head in place during the pre-surgical scans and the surgery itself. The information from the CT and/or MRI scans, along with coordinate information from the headframe, is entered into a computer system. The images produced, with their relational coordinates, are used to plan the surgery and guide the surgeon’s tools during the procedure.
  • Frameless steriotaxy utilizes an imaging hand-held device rather than CT or MRI. With this approach, the head must be stabilized in a frame. The surgeon touches structures in the patient’s brain with an imaging “wand” that superimposes that location in the brain on a computer monitor showing a recent scan or three-dimensional image of the brain. This tool is used to orient the surgeon as to the exact location of the tumor as compared to a specific point on the exterior of the brain. The wand provides quick and continuous “real-time” information about its location during surgery. This tool is particularly useful during skull base surgery, which is an especially complicated area. It is also of value when multiple tumors are to be removed. The viewing wand can shorten the surgical time by quickly identifying parts of the brain and localizing the tumor.

Researchers anticipate that, in the not too distant future, a significant portion of neurosurgical procedures, as well as many general surgical procedures will involve stereotaxy. [13]

Embolization: Embolization is used to reduce the amount of blood supply to a tumor by blocking the flow of blood in selected arteries. This procedure is conducted prior to surgery. Results from an arteriography, which is an X-ray taken after radiolabeled dye has been injected into the circulatory system, help determine whether embolization is necessary and which blood vessel or vessels may need to be blocked. Surgery follows as soon as possible to avoid re-growth of blood vessels. This technique might be used with vascular tumors such as meningiomas, meningeal hemangiopericytomas, and glomus jugulare tumors.

Endoscopy: Endoscopes are long, narrow, flexible lighted tubes that are inserted into the surgical area. They provide the surgeon with light and visual access. Preoperative scans help determine the location of tumors and enable the surgeon to plan surgery using relatively small openings. These small openings (sometimes called keyhole approaches) make it difficult for the surgeon to see. The endoscope helps solve that problem. The neuro-endoscope is particularly useful for surgery that involves correcting a malfunctioning shunt, removing scar tissue blocking a shunt, or removing intra-ventricular tumors. It can also be useful for removing brain cysts.

Laser surgery: Using a laser during brain surgery is a relatively routine practice. The aim of laser surgery is to direct the laser beams at the cancer and destroy it with heat. Because the light beams cannot penetrate bone, the laser can be used only during surgery. Lasers are used in addition to, or in place of, a scalpel. Lasers are capable of immense heat and power when focused at close range. Lasers destroy tumor cells by vaporizing them. Stereotactic, or computer-assisted techniques, are frequently used to direct the laser. Lasers are chiefly used in the treatment of tumors that have invaded the skull base or are deep within the brain, with hard tumors that cannot be removed by suction, or with tumors that break apart easily.

Photodynamic laser surgery: A laser is also used in photodynamic therapy. Photodynamic therapy combines a drug that increases a tissue’s sensitivity to light and laser surgery. Prior to surgery, the photosensitizing drug is injected into a vein or artery. It travels through the blood system to the tumor, accumulating in the cells of the tumor. The patient is then taken to surgery for removal of the tumor. During the operation, the treated tumor cells appear fluorescent. The physician aims a laser at the tumor cells, activating the drug. The activated drug then kills the tumor cells. Only operable tumors can be treated with this procedure. Tumor cells not seen by the surgeon or not sensitive to the drug are not affected by this treatment. This is a local form of therapy because some parts of the tumor might not be exposed to the light. Because of the danger of swelling, tumors near the brain stem cannot be treated with this technique.

Ultrasonic aspiration: Ultrasonic aspiration uses ultrasonic sound waves to fragment and break the tumor into small pieces, which are then aspirated, or suctioned out. This technique causes fewer disturbances to adjacent tissue than other types of suction devices because it causes less heat and destruction of normal tissue. This is particularly helpful with tumors that would be difficult to remove with cautery and suction because of their firmness and location. As with the laser, the use of ultrasound has permitted the removal of tumors that would otherwise have been inoperable.

Strategies to Improve Treatment

The development of more effective cancer treatments requires that new and innovative therapies be evaluated with cancer patients. Clinical trials are studies that evaluate the effectiveness of new approaches. Future progress in the surgical treatment of brain tumors will result from the continued evaluation of new treatments in clinical trials. Participation in a clinical trial may offer patients access to better treatments and advance the existing knowledge about treatment of this cancer. Patients who are interested in participating in a clinical trial should discuss the risks and benefits of clinical trials with their physician. Areas of active investigation aimed at improving the surgical treatment of brain tumors include the following:

Fluorescent-guided surgery: The use of a compound that collects in glioblastoma cells and emits fluorescent light may make it easier for surgeons to detect and remove cancer cells during surgery. The compound—called 5-aminolevulinic acid (5-ALA) is administered orally and is converted by normal metabolic processes in the body to a substance that has been shown to accumulate in glioblastoma cells. Physicians have determined that using this technique may enable them to detect glioblastoma cells that cannot be detected through standard methods.

Physicians in Germany have reported that fluorescence-guided surgery using 5-ALA improves the chance that a cancer can be completely removed with surgery and improves progression-free survival in the treatment of patients with malignant glioma (see table). This trial included 322 patients with newly diagnosed malignant gliomas who were eligible for surgery. Approximately half of the patients underwent fluorescence-guided surgery with 5-ALA, while the other half underwent standard surgery. Patients undergoing fluorescence-guided surgery had significantly improved outcomes.

Table 1 More cancer is removed with fluorescent-guided surgery

Fluorescent-guided surgery Standard surgery
Complete removal of cancer 65% 36%
Progression-free survival 41% 21%


Older patients experienced improved survival (14.1 months) when treated with fluorescence-guided surgery compared to those treated with standard surgery (11.5 months); however, patients younger than 55 years did not have a survival benefit. [14]

Imaging and Monitoring Techniques (Brain Mapping)
Types of Surgery for Brain Tumors


[1]Birkmeyer J, Siewers AE, Finlayson EVA, et al. Hospital Volume and Surgical Mortality in the United States . New EnglandJournal of Medicine. 2002;346:1128-37.

[2]Begg C, Elyn R. Riedel ER, et al. Variations in morbidity after radical prostatectomy. The New England Journal of Medicine. 2002;346:1138-1144.

[3]Hu J, Gold K, Pashos C, et al. Role of surgeon volume in radical prostatectomy outcomes. Journal of Clinical Oncology. 2003:21: 401-405.

[4]Hodgson DC , Zhang W, Zaslavsky AM. Relation of Hospital Volume to Colostomy Rates and Survival for Patients with Rectal Cancer. Journal of the National Cancer Institute. 2003;95:708-716.

[5]Smith TJ, Hillner BE and Bear HD. Taking Action on the Volume-Quality Relationship: How Long Can We Hide Our Heads in the Colostomy Bag? Journal of the National Cancer Institute. 2003;95:695-697.

[13]Kelly PJ. Stereotactic surgery: what is past is progogue. Neurosurgery. 2000;46:16-27.

[14]Stummer W, Pichlmeier U, Meinel T, et al. Fluorescence-Guided Surgery with 5-Aminolevulinic Acid for Resection of Malignant Glioma: an Aandomised Controlled Multicentre Phase III Trial. Lancet Oncology. Early online publication April 13, 2006. DOI:10.1016/S1470-2045(06)70665-9.


Sign up for the CancerConnect newsletter

Sign up for our newsletter and receive the latest news and updates about specific types of cancer.

  Close |  Please don't show me this again

Facebook Twitter RSS